NOISE LEVELS IN HIGH CAPACITY **AMMONIA PLANTS**

Proper installation of-silencers makes a big difference; industry standards urged

R. Caputo E. Denmark 1. Heitner H. C. Mayo

M. W. Kellogg Co., Inc. New York, N. Y.

Noise has been defined as unwanted sound. Its undesirable effects can be temporary or permanent hearing loss, inability of personnel to communicate effectively. and reduction in efficiency.

A brief discussion of acoustical terminology is presented below to aid in understanding the tabulated data. Sound power is defined as energy per unit time and is measured in watts. Sound power can vary from 10 " watts for a very soft whisper to 10° for a jet, a total variation of 10^{14} watts, it is normal practice to express sound power as a log function. An additional advantage of employing a log function is that the response of the human ear seems to be in direct proportion to the log of the sound intensity.

If W is the sound power of the noise source in watts and W is a reference sound power (frequently taken as 10⁻¹³ watts) then the sound power in decibels is defined as 10 by $\frac{W}{10^{12}}$, Similarly, sound intensity level (I.L.) is defined in dicibels using a reference intensity of 10 '- watts per square meter. Thus: I.L. = 10 log₁₀ $\frac{1}{10^{-1}}$ decibels.

It is difficult to measure sound power or intensity but comparatively easy to measure the variation in atmospheric pressure produced by noise, using microphones which convert the sound pressure into a voltage. It can be shown that $P'' = \pi CI$ where: P = root mean square sound pressure

- π = the density of air
- C = the velocity of sound in air, and, I = the sound intensity (watts per square meter.).

Thus, in the definition of sound intensity instead of taking the ratio of l/L, we take the ratio of P^2/P_n^2 to obtain a definition of sound pressure level (SPD equal to 10 $\log_{10} \frac{P}{P_n^2}$ or SPL = 20 $\log_{10} P/P_n$. P_n, the reference pressure, is taken as 0.0002 dynes per cm⁻ and thus the units of SPL are decibels referred to 0.0002 dynes per square centimeter.

Overall SPL values

To obtain a general idea of the magnitude of the readings presented in this article, general overall SPL values are presented in Table 1.

All of the noise levels presented in this article are sound pressure levels in decibels (referred to 0.0002 dynes per cnr). correspondingly. noise levels presented in the various legal. insurance, and company specifications are usually in the same units. The instrument used for measurements in the 1.000 ton plants was a General Radio Co.-Model 1558A octave band noise analyzer. For 600 ton plant measurements, a Herman Hosmer Scott sound level meter Type 410B and sound analyzer type 420A were used.

The human ear is sensitive to frequencies between 20 and 10,000 cycles per second but the physical and psychological response to

different frequencies vary, the higher audible frequencies being the more damaging. Thus a single overall SPL reading is not a complete description of the noise since what is needed is the noise intensity as a function of frequency. It is customary to divide the frequency spectrum into bands (one typical division being ,20 to 75, 75-150, 150-300. etc. up to 4800 to 10.000 cycles per second) and then to make measurements in each band. Where the upper frequency is twice the lower frequency the band is known as an octave. The data presented herein consists of frequency band readings and one overall reading.

Table 1. General overall SPL values.

Source	SPL (re 0.0002 dynes/cm ²)
Automobile horn at 3 ft.	115 (2)
InsideDC-6Airliner	105 (2)
Air Compressor at Street construction site	e 102 (1)
N. Y. City Subway Train (Interior)	100 (1)
Inside auto at 50 mile / hr.	94 (1)
Inside bus at starting	92(1)
Normai N. Y. City traffic	88(1)

(1) M. W. Kellogg Company readings. (2): Published data

Table 2. Limiting noise levels established by California.

Frequency Band	Octave Band SPL (decibels re 0.0002 dynes / cm ²) Exposure Time (per normal work day)									
cvcles / sec.	<u>5 or more hrs.</u>	<u>2½ hrs.</u>	<u>1¼ hrs.</u>							
20-75	110	113	116							
75-150	102	105	108							
150-300	97	100	103							
300-600	95	98	101							
600-1200	95	98	101							
1200-2400	95	98	101							
2400-4800	95	98	101							
4800-10,000	95	98	101							

Specificationsarerequired

In designing any plant for acceptable noise levels, specifications are required. Various government agencies, insurance companies. manufacturing companies and scholarly experts have prepared such specifications but no universally agreed upon standard exists jn the chemical industry.

In Table 2 is an extract from Group 6.1 Noise Control Safety Orders, State of California, Artical 55 Standards for Noise Control presenting limiting noise levels in various frequency bands for different exposure times.

If the limits are exceeded for the specified durations, the use of ear protectors is indicated.

It is possible to sum the SPL values in the frequency bands to give an overall SPL value. The curve in Figure 1 is useful in summing noise levels. Usin₅ the curve we note that the addition of two equal intensity sources increases the overall level by 3 decibels and the addition of two sources 10 decibels apart produces a negligible increase (0.44 db) in the overall level.

A typical example of this addition is the sum of the frequency bands of the California Noise Control Safety Levels presented in Figure 2.

The overall SPL is 111.3 or approximately 111 decibels.

In examining the California Noise Control Safety Leveïs three important features become apparent.

- First: the greater permissible noise level in the lower frequencies.
- Second: the introduction of an important variable from the safety point of view the time of exposure.
- Third: the purpose of the Orders. the prevention of hearing damage.

Difference in Decibels between the two levels being added

Figure 1. Curve above is useful in summing noise levels.

Frequency

ł

Figure 2. A typical example of addition of levels is the sum of the frequency bands noted above.

What the data shows

Data has been classified according to size of plant (600 or 1.000 con per day) and by type of operation (normal or start-up) Figures 3-8. Plot plans showing the points of measurement are included. In determining whether the noise levels are reasonable. comparison should be made with a Standard. We suggest that for the present. comparison be made with the Noise Control Safety Levels. State of California. It should be emphasized again that these levels are suggested limitations with avoidance of hearing damage as the criterion.

Comparison with the State of California levels shows the following:

600 Ton Plant-Normal Operation:

All points, except reformer furnace burner room meet the extended period safety leveSs. However, this room has low operator attendance requirements (less than 1¼ hours a day).

1.000 Ton Plant-Normal Operation:

Of the 36 readings taken, seven do not meet the State of California Safety Levels. Four of these points are in the burner area and the remaining three are in the compressor area. The burner area is an area of low operator attendance. It should be noted that the hogging jet was in operation in the compressor area during the period of data collection and therefore values obtained in the immediate vicinity of the jet may be higher than normal.

600 Ton Plant Start-Up (No Silencers):

An examination of the data indicates that three fourths of the ratings exceed the California Safety Levels.

These values will exist during every startup. The first startup with its many catalyst preparation steps has taken from one to three months: duration dependent on the extent of commissioning problems. However, subsequent startups are of short duration with atmospheric gas venting restricted to less than one day's duration.

1.000 Ton Plant - Startup (With Silencers):

Considering operator attendance requirements, all points except location 8, taken at grade below the air compressor vent. meet the California Safety Levels. Dependent on individual requirements, additional noise attenuation can be provided by means of a larger silencer and acoustical treatment. It was not possible to secure noise level readings while venting upstream of the high temperature shift converter. These values, however, should be somewhat higher than the reported values taken while venting upstream of the methanator.

Some observations have been made

An analysis of the data coupled with a knowledge of the installation and our operating experience. yields the following observations:

1. The most intense noise sources are the startup vents. Silencers do reduce these levels. This observation has been substantiated by resident personnel at 600 ton plants who were present both before and after installation of silencers on atmospheric vent piping. They reported a noticeable noise reduction but, unfortunately, numerical data to confirm this observation is unavailable.

2. Observations of the 1,000 ton plant at startup give indications that less than the expected noise attenuation was achieved while venting to atmosphere through the silencers. This is currently being investigated, and further data collection and evaluation is contemplated in the near future. One possible explanation is that other noise sources previously masked by the unsilenced vents are now the major noise producers. With this in mind, pressure reducing stations and pipe lines discharging to the atmospheric vent stacks are being reviewed. If pipe lines or pressure reducing stations are now dominant noise sources then acoustical treatment such as insulation and jacketing would be required to further attenuate noise levels.

3. If noise attenuation lower than the reported data is desired at specific equipment locations, then a variety of treatment techniques can be employed. These include not only silencers and acoustical insulation but also barriers. furnace air intake mufflers, energy absorption devices, and other plant design techniques. For confined areas of infrequent operator attendance, the use of ear protectors by operating personnel is an economical alternative.

4. It is possible for a plant to meet the requirements of the California Noise Control Safety Orders and still exceed the levels that are deemed acceptable by the plant or the local community. In the absence of plant or community specifications, actual noise

GOO TPSD AMMONIA PLAKT NOISE LEVELS .

NORMAL OPERATION

RECORDED SOUND PRESSURE LEVELS (db re 20002 DYNES/CM2) FOR INDICATED PREQUENCY BANDS (CPS)

LOCATION	<u>O</u> f	NOISE	MEAS	UREMI	ËNT

CALIFORNIA NOISE CONTROL SAFETY LEVELS

I- IN CONTROL ROOM

2- OUTSIDE CONTROL ROOM - SOUTH SIDE ST ON AIR COMPRESSOR PLATFORM 4- OM REFRIGERANT COMPRESSOR PLATFORM 5-OM SYN «AS COMPRESSOR PLATFORM TO- SOUTH-WEST CORNER OF BATTERY LIMITS 7- NOATH - WEST CORNER OF GATTERY LIMITS 8- NORTH - EAST CORNER OF BATTERY LIMITS 9- FOUTH-EAST CORNER OF BATTERY LIMITS 10 - BURNER END OF AUXILIARY BOILER - AT GRADE II- NORTH SIDE OP METHANATOR AT GRADE 12- SOUTH SIDE OC METHANATOR AT GRADE 13- SOUTH SIDE OF CO2 STRIPPER 14" BETWEEN TWO SOLVENT CIRCULATION PUMPS 15 - WEST END OF PLANT; UNDER PIPE FIACK. 16 - IN WATER TREATING BLDG. 17 - IN PRIMARY REFORMER BURNER SHACK 18 - BETWEEN PRIMARY & SECONDARY REFORMERS 19 - UNDER PIPE BACK - NEAR REFRIG FLASH DRUMS 20-UNDER ftft RACK - EASTERN PART OF PLOT

PERALL	20-75	75-150	150-200	300 - 7	/ -12.00	1200-2400	2400-4800	4800-9644	1600-20KC
	110	102	57	9૬	1.5	95	95	95 (480	0-10090)
70	67	53	52	38	27	25	27	24	
95	84	61	87	77	77	68	67	63	57
94	80	82	82	80	82	84	85	77	73
94	81	ା ବା 🔤	84	80	81	82	83	75	63
99	81	85	ft*	63	88	86	92	84	81
85	80	76	76	72	71	73	70	66	61
83	75	74	75	69	72	11	63	42	36
90	83	74	77	76	74	72	69	60	49
80	74	73	72	68	66	fe4	62	52	43
101	93	92	94	89	84	81	83	79	71
95	89	85	84	80	78	76	75	70	60
94	78	86	84	79	79	75	73	74	69
99	82	86	SS	84	63	87	85	88	85
96	79	80	84	88	82	# }	sa	76	72
15	77	74	76	76	63	63	73	65	59
84	76	75	75	74	73	73	76	66	60
114	101	104	22	101	100	103	106	106	102
95	80	86	82	79	76	77	77	74	70
94	80	85	83	79	79	77	86	77	72
93	Μ	82	83	79	80	81	fcO	76	72

600 TPSD AMMONIA PLANT NOISE LEVELS - (VENT SILENCERS NOT PROVIDED)

START . UP OPERATION

THE FOLLOWING MEASUREMENTS WERE RECORDED WHILE VENTING UPSTREAM OF THE SHIFT CONVERTER AT THE TOP OF THE STEAM DRUM EMUCTURE (70 % OF NORMAL FLOW)

- 11- IN WATER TREATING AREA
- 22- 35 FROM BURNERS ON AUXILIARY BOILER
- 23 ON BURNER PLATFORM OF AUXILIARY BOILER
- 24 20' SOUTH OF DOOR TO LABORATORY
- 15 ON STEAM DRUM PLATFORM & FROM VENT
- 26- IN PRIMARY REFORMER BURNER SHACK
- 11 ON PLATFORM OF SYN. GAS COMPLESSOR
- 28 ON PLATFORM OF REFRIGERANT COMPRESSOR

VERALL	18.75 -	37.5-75	75-150	150 -300	300 -400		1200 2400	1400 -	4600 -	9600-1112144
100	82	64	89	92	92	60	91	94	87	49
75	90	93	90	91	88	83	86	87	82	67
il la	99	109	103	112	108	104	101	78	97	85
101	80	86	93	- 94	96	95	•	97	93	76
120	но	108	105	112	111	108	ut	<u>117</u>	113	97
108	95	%	97	100	96	98	104	102	50	90
107	90	26	86	91	33	76	101	103	100,	86
107	90	91	86	89	90	95	39	101	97	93
						i				

22

- EAST OF DESULFURIZER ON BOAD 10 -
- KONTH BATTERY LIMIT 11-
- 12 IN CONTROL MOM
- 13 NOATH OF METHANATOR
- UNDER PIPE RACK NORTH (F SYN. 445 COMPRESSOR (4 BATTERY' LIMIT 15 - SOUTH
- NORTH SIDE W COS STRIMER ABOUT 20 AWAY 12 - IN LOW PRESEVER EXCHANGER AREA
- NORTH OF CO, AMORACE ABOUT н. 5' Astes

17 Figure 5. Noise levels in a 1,000 ton ammonia plant; at start-up

104 108

101

101

101

19 I 90

61

45

100 99

92

41

57

ee 104 94

86 97

84 •1

73

35 36

85

84

83

ao

83 80

•6

82 74

74

14

87 •3

80 80

89

зć

60

84

81

80

60

82

levels can vary over a wide range from values that allow easy plant communication and community comfort to shattering values that are uncomfortable, fatiguing and potentially harmful.

The effect on Communications

With regard to plant communication, the following observations are representative of opinions by resident personnel on the earlier units.

a). On the first 600 ton plant, communication at startup was

extremely difficult.

65

ũ M

91

8 z

82

80

7*

b). After the addition of silencers to this plant, communication at startup as well*as normal operation did not present any problems except for some difficulty in the compressor and furnace areas.

9+

67

1.0

80

72

76

«J t/

•7 86

BĨ

73

76

71

<u>96</u> 93

91

81 90

92

90

«7

49

~

90

81

71 69 «t

64

59

¥16

93

90

41 76

72

72

64

76

75

c). On the silenced 1,000 ton plant, communication during startup and normal operation is acceptable except for some difficulty in the compressor and furnace areas, and adjacent pipe rack.

LOOO_TPSD_AMMONIA	A PLA	NT_N	OISE LI	VELS							
NOR	MAL	OPERAT	<u>10N</u>				` H			· ``.	
	REC	ord PD	SOUND	PRESS	URE LEN	e us (b m (0.000	·····/cm	• >	
LOCATION OF NOISE MEASUREMENT			FOR	INDI	ATLD -	REQUENS	Y Bani	کر در او	}		
	OVERALL	14.75-22.5	31.5-15	76-19	150-300	300-400	too-noC	1000-10000	400+480	4800-9000	9600-192.00
CALIFORNIA NO KE CONTROL SAFETY LEVELS			10(30-34)	Dr	f7	75	95	95	95	2 (1800-	10000)
I- IN -PRIMARY REFORMER BURNER SHACK	113	548	ભા	97	100	100	100	100	M	101	86
t- SOUTH-WEST CORNER OF STEAM DRUM PLATFORM	95	78	81	84	87	84	M	85	92	80	69
3- NORTH + WEST CORNER OF STEAM PRUM PLATFORM	92	76	83	83	85	80	84	65	es	75	66
4- TOP EXTERNAL PLATPORM OF FRIMARY REFORMER - NW CONNER	98	79	•7	91	90	90	84	89	- 51	86	71
5-SAME PLATFORM M 🚯 - EAST SIDE OF IT. TRON.M6*,.	- 94	74	85	84	67	86	77	74	90	80	68
6- BOTTOM EXTERNAL PLATFORM OF PRIMARY REPORNER-3	112	81	92	97	93	21	97	99	103	104	94
FROM TUNMEL BUANER - (NH SIDE)		Ľ				•					
T- SOUTH SIDE OF WATER TREATING AREA.	- 99	81	«7	89	§1	89	97	92	94	91	78
t- NORTH BATTERY LIMIT	-92	62	86	84	ft€	ftO	80	82	83	75	67
9- 10' SOUTH OF CONTROL HOUSE MAIN DOOR	36	82	61	88	85	87	•7	87	87	74	70
0 - IN CONTROL ROOM	8)	74	74	76	74	71	73	72	41	67	67
11- 15' NOATH OF SECONDARY REPORMER		85	«C»	67	90	86	86	81	94	47	24
12- ON ROAD EAST OF DESULFURITERS	96	63	88	\$5	89	87	67	- 86	«9	- 14	71
13- AT G(t*W; SOUTH-EAST SIDE OF SHIPT CONVERTER	95	86	91	sd	89	M»	86	89	96	82	70
H- UNDER RACK , 10' WEST OF PRIMARY REFORMER FURNACE	104	14	92	91	91	10	«4		53	86.	75
IS- ON LOWER BURNER PLATFORM OF AUXILIARY BOLLER	110	92	106	99	100	101	102	97	97	8- 1	85
W- IS' SOUTH OF CO AT GRADE	101	M	99	91	92	97	93	92	91	87	. 91
17- HEST OF AUX ILIARY BOILER	94	86	90	86	87	94	83	•ft	æ	er	72
10- NORTH OF AIR COMPRESSOR UNDER RACK	99	80	67	89	91	ft7	96	96	14	86	77
IT- F' SOUTH OF METHANATOR	94	81	87	87	91	87	66	87	87	£0	71
10- 13' NORTH OF METHANATOR	Μ	80	85	- 26	9 1	89	86	91	86	78	77
21- UNDER RACK NORTH OF SYN. GAS COMPRESSOR	100	83	85	86	90 .	86	87	<u>97</u>	<u>96</u>	90	79
tI- S' SOUTH OF COL JTRIPPER	95	BS	es	88	88	85	86	90	91	04	74
ia- is' north OF COL STRIPPER	93	78	83	83	\$4	78	80	•4	84	76	то
24- 5' FROM LEAN SOLVENT CIRCULATION PUMP	95	, co	61	Q 5	88	84	66	89	? L	83	88
M- CENTER OF LOW PASSAURE EXCHANGER AREA	92	171	77	81	86	82	«O	80	52	71	89
26- 5' NOATH OF CG2 ADSORAER	87	רר	71	63	«	76	79	76	76	75	69
27- 10 SOUTH OF COL ASSGRETA	93	77	79	81	67	80	e»	84	84	80	କ
28- WEST END OF REFRIGERANT FLASH DRUMS - ON NATYORM	40	74	76	ଞା	63	84	76	63	00	78	79
29 - 10' SOUTH-WEST OF AMMONIA CONVERTER	87	74	77	76	75	ור	71	72	74	«9	SS
30- SOUTH BATTERY LIMIT	95	87	88	86	67	87	67	56	87	82	73
31- CONTER HIGH PROSSURE EACHANGER AREA	91	82	81	81	84	77	71	84	83	76	66
32- 4' EAST or AMMONIA CONVETI-TKL	89	78	77	71	82	17	77	80	60	71	47
13- UNDER RACK, CENTER OF PLOT	97	77	60	85	81	87	89	11	95	89	77
S - ON SYN, GAS COMPRESSOR PLATFORM	96	71	78	63	87	fcS	87	70	92	89	
35- ON REFRIGERANT COMPRESSOR PLATFORM	104	70	71	85	10	87	71	1 39	끘		74
36" ON AIR COMPRESSOR PLATFORM	104	170	<u> </u>	_ 24	9	<u>8</u>	92	<u> </u>		<u>, 98</u>	

Figure 7. Noise levels in a 1,000 ton ammonia plant; normal operation.

It is of interest to note that comparison of the data presented herein to speech interference levels presented in the literature would probably not be consistent with the above observations. In a recent article titled "Relieving Acoustic Fatigue" by G. C. Tolhurst (Machine Design - August, 1966), however, the following is noted - "A signal to noise ratio should be at least plus 12 db although it is possible to maintain good intelligibility of simple. connected discourse at a minus 8 db if the channel is wide enough". This point certainly confirms our observations.

Client noise requirements vary and in some cases are nonexistant or unspecified. Similarly, communities bordering on industrial plants have varying noise ordinances or none at all. Therefore, with so subjective a topic, unilateral establishment of "proper" noise levels by cornpetitive contractors is extremely difficult. Thus, in the present age of high-capacity plants, with 1.500 ton per day plants in the offing, we suggest that definite noise standards be established for the chemicai industry. Such standards could be graded to reflect the varying requirements that industrial plants and local communities may impose. However, a more suitable approach' would be to adopt a minimum Standard, thereby allowing plants and communities with more stringent requirements to impose individual solutions tailored to satisfy the local environment.

Figure 6. Plot plan of 1.000 ton plant showing measurement points (Start-up).

Figure 8. Plot plan of 1.000 ton ammonia plant showing measurement points (normal).